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Any reproduction of a visual artwork creates
a representation that ‘fails to capture some properties of the
original. Since most art i s not sufficiently portable LO make
it available to all possible viewers, we accept the necessity of
making reproductions with the consequent loss in proper-
ties, some of which may be vital to the proper appreciation
of the artwork. Photography i s the most well established of
these reproduction methods. Critical viewers know that pho-
tographic reproductions fail to capture color, texture, three -
dimensionality, surface texture, tonal gradations, fine de-
tailed structure, and movement. Still, we make photographs
and use them for teaching, scholarship, archiving, criticism
and conservation of visual art materials.

Other reproduction methods are newer and less familiar,
presenting new opportunities and demanding new com-
promises. Two notable such methods are the analog repre-
sentations used on video d~scsand the digital represen -
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Fig. 1. Albrecht Diirer, MekncholiaI,engraving, 240 X 187mm,
1514.

tations used on optical discs for
storage of art images. These
methods differ inimportant ways
from photography, notably in
their ability to capture move-
ment and to be rapidly searched
among large collections of such
images; however, their spatial
resolution i s poor compared to
photography.

We could continue to list
other methods of representing
artworks, but almost all common
methods we might list share one
important property-they ignore
the art by being passive with re-
spect to the content of the image.
To suggest that a photograph or
a \ideo disc recording ignores
the artworks recorded is to imply
that there i s an alternative. Can a
storage medium look at a work of
art in such a way as to be said to
perceive it?We would hesitate to
answer ‘yes’, unless some intel -
ligent process had intervened in
the recording so as to show some
evidence of understanding. Or-
dinarily, we think of understdnd -
ing associated only with human
capabilities. However, great ad-
vances in the field of artificial
intelligence over the past three
decades of research have en-

Fig. 2. Computer
scanned and
reproduced detail
with a scanning
resolution of 50
micrometers. Eight
levels of grey tone
are shown inindi-
vidual pixels.

A B S T R A C T

Images of artworks can be
stored in media that preserve differ-
ent.characteristics of the origmal.
Differences exist in the extent to
which we can preserve color, three
dimensionality, surface texture, fine
structure, tonal gradations, tem-
poral variations and other charac -
teristics that lend uniqueness to iw
dividual artworks. Usually, we are
willing to sacrifice some of these
characteristics in exchange for the
permanence and recoverability
offered by storage media. Thus, a
color slide Idiaposltive), which is a
common medium for storing im
ages of artworks, compromises all
of the above properties to different
extents but is nevertheless con-
sidered useful for the archival prop
erties it offers for images of art-
works. Digital storage media used
in conjunction with computers offer
new opportunlties and demand new
compromises in storing art images.
An unusual challenge is offered by
the possibility of providing intelli-
gence to a computer. The authors
make clear the sense in which we
may ascribe Intelligence to the corn
puter and how this may be used to
‘perceive’ the image of an artwork.
The computer then uses its knowl-
edge of the artwork with respect to
a large class of such works not only
for archival storage but also to
achieve economy In the use of the
storage medium. The authors illus-
trate the achievement of storage
economy as much as tens of thou
sands of times greater than storage
without intelligence. The intelligence
is provided to the computer as syn-
tactic descriptions of classes of art -
works. The syntactic descrlptions
incorporate Insight from the art his
torian, critlc or artist who uses in-
novative tools like shape grammars
to provide the computer with a
small part of the intelligence that
the educated human viewer brings
to the perception of the artwork.
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Fig. 3. Einstein postage stamp, issued 4
March 1979, U.S. Treasury, Bureau of
Printing andEngraving.

couraged u s to think of computers as
having some degree of understanding
in many disciplines. We see no reason
why these insights from artificial intel -
ligence should be denied to the visual
arts. And we might expect that there
would be different degrees of under-
standing to which computers might
aspire, ranging from the superficial LO

that of an art historian, critic, educa -
tor or artist.

The question wc raise about com -
puter perception i s not moot because
it has been demonstrated recently that
storage media using computers in
novel ways can exhibit some limited
understanding of works such as the ar-
chitectural drawings of Frank Lloyd
Wright [11 and the f ine a r t images of
artists like Joan Mir6 [2] and Wassily
Kandinsky [3]. Computer under-
standing has also been demonstrated
for paintings by Richard Diebenkorn
[4], for a comparison of paintings by
Georges Vantongerloo and by Fritz
Glarner [5], for woodcuts by the Ger-
man artist Jacob Fauser [6] and for
contemporary computer art by Harold
Cohen [7]. For each of these artists, i t

has been shown that a computer can
be said to ‘understand’ the artist’s
work in one of several senses. In the
simplest case, the computer can class-
ify an image upon viewing it. In a
deeper sense, the computer can be
said to understand the image by being
able to place i t in chronological se-
quence with images of other works by
the same artist. In a sti l l deeper sense,
the computer understands the art-
work because it has produced the work
by itself. And finally, in the deepest

Fig. 4. Computer scanned and enlarged
detail from below the eye in the Einstein
engraving.

sense, the computer can be said to un-
derstand an art image by being able to
recognize i t s formal properties and by
being able to synthesize other works
that are stylistically similar.
All these capabilities have been

demonstrated and are the subject of
ongoing research. We therefore feel
justified in saying that a computer
need not ignore an artwork that it sees.

I f the matter ended there, we might
precipitate discussions in aesthetics,
or evcn in epistemology, without any
necessary practical consequences. But
there are many practical conse-
quences that follow from computer
understanding of ar t images. In this
paper we discuss one of these: the abil-
ity of computers to reduce greatly the
storage requirements needed for ar-
chiving such images.

THE STORAGE
PROBLEM

Digital storage of images i s more
expensive than photographic storage.
This expensiveness i s apparent if we
consider only the cost of producing a
stored record. The reason for storing
images i s usually to perform subse-
quent operations on thc stored im-
ages, ranging from the common case
of retrieval of the image to the more
esoteric cases of modification of the
image and answering questions about
the image. All of these operations can
bc done on photographic images by
varying degrees of manual manipula-
tion, but when speed i s important, dig-
ital storage i s more economical for re-
trieval o f images. When automated

Fig. 5. Extreme enlargement of detail
below the eye in the Einstein engraving.

operations of the more esoteric kind
are desired, only digital storage allows
us to perform such operations as
image enhancement, pattern recogni -
tion, image comparison and searching
of images directly without the inter -
vention of a text-based description.
We are therefore led to consider the
storage of images of artworks in the
form of digital records accessible to

conventional computers.
The digital medium of choice has

become the optical digital disc. Ca-
pacities for such storage range from
600 megabytes on ‘compact disc read
only memories’ (CD-ROM), which
can be read only by the user, to 2000
megabytes on the much more expen-
sive ‘write once read many’ (WORM)
optical discs, which can be recorded
once by the user and read thereafter
as often as desired, as can the CD-
ROMs. Complementing the storage
media i s the technology for scanning
images and for producing the digital
signal to be recorded on the optical
discs. This technology i s much more
mature, having been used with com-
puters for over three decades.

I t is useful to understand the rela-
tions among artworks, their scanned
images and the storage requirements
needed for recording those images.
To make this relation clear, consider
the engraving by Durer (1514) shown
inFig. 1. A print of this engraving was
scanned with a scanner having a reso-
lution of 50 micrometers per picture
resolution element (pixel). We can
see the extent to which this black-and-
white print i s adequately resolved with
such a comparatively fine scan by
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studying the eye detail shown inFig. 2.
Here we can see the individual pixels.
We notice that the line workinDiirer’s
engraving, which resolves quite well
on the original print, i s poorly re-
solved at this scanner resolution.
Nevertheless, the whole scanned im-
age requires a storage capacity of 18
megabytes at this (inadequate) reso-
lution. Furthermore, this image has
been scanned to produce an image
with about 65 times as much informa-
tion as a conventional black -and-white
TV image contains. It follows, therc -
fore, that a scanned image of the
Diirer print, using only the resolution
common with TV cameras and video-
discs, will be quite inadequate if the
fine structure of the engraved lines i s
to be resolved. However, i f no detailed
structure is needed in the stored
image, the coarse resolution may be
adequate.

Occasionally i t i s suggested that, for
so-called ‘line work’, the use of com-
puter graphics technology i s more ap-
propriatc than scanned images. Cer-
tainly, there are images, of at least
peripheral interest in the fine arts, for
which line drawings can create ade-
quate representations of the original
works. The most obvious examples oc-
c u r in architectural drawing. Here, the
use of computer graphics l ine draw-
ings can provide greater storage econ-
omy than ran scanned images. There
are commercial machines in the com-

puter-aided design (CAD) field that
scan architectural drawings and im-
mediately convert them to line draw-
ings for many purposes, one of which
i s storage economy.

We must be careful not to infer that
other kinds of drawings can be suscep
tible to the same treatment. Again, an
illustration willmake the issue clear if
we consider line engravings. Figure 3
shows a print from a contemporary
f ine engraving made for a postage
stamp by a master engraver at the
United States Treasury. Upon supcrfi -
cia1 inspection, i t appears to be a l ine
drawing and therefore capable of be-
ing represented by a sequence of line
scgments commonly used in cornpu-
ter graphics. But if we look at an en-
larged detail of the image (Fig. 4), we
begin to see, and can sre more clearly
in a further enlargcnlent (Fig. 5), that
the image i s composed of complex
shapes and not of lines at all. The en-
graver has control over l ine quality
that goes beyond the control that can
be exercised, for example, by an

etcher.
To test whether the detailed struc -

ture ofFig. 5 i s an artifact of high mag-
nification or an essential part of the
composition, we performed a simple
test. We showed the detailed structure
ofFig. 5 to the engraver who had made
the original engraving a few years pre-
viously. We asked him to locate the
detailed image of Fig. 5 in the whole

Fig. 6. Richard Diebenkorn, OceanPark#Ill,oil and charcoal on
canvas, 336.2 x 336.7 an,1978. (Hirshhorn Museum and Sculp
ture Garden, Smitbsonian Institution, Mwum Purchase, 1979)
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composition ofFig. 3without the help-
ful intermediate illustration of Fig. A
H e took about 2 minutes to describe
the structure of Fig. 5, immediately
concluding that it must occur at the
edge of Einstein’s eye, and then, in
another minute, located the exact
spot where the detail could be found.
The conclusion from this simple ex-
periment i s something known to most
artists: everything counts! And so the
gratuitous proposal that this engrav -
ing be treated as ‘nothing more’ than
a l ine drawing fails a simple test.

We expect that most true drawings
in which line structure i s important
would similarly fail to be adequately
represented by computer graphics
line drawings. And therefore, for
drawings, only the crudest repre -
sentations, such as TV scans for im-
ages, can be achieved with the obvious
use of the most readily available tech-
nology.

RECOVERINGIMAGES

FROM STORAGE

When an image i s scanned with a TV
camera, there i s a direct correspon -
dence between the original image, thc
scanned version, the version stored in
computer memory and, finally, the im-
age that i s recovered for display. For
every pixel extracted by the scanner
from the original image, a corre-

Fig. 7. A h e a r representation of the structure of Fig. 6.

Kirschund Ktrsch, Storing Art Images in Intelligent Computers 101



I OPP l OPRl N

2 OPP l OP/S

4 OP

* p "

w w

R

R W

R unhd8spalcherR removed

Fig. Sa. A grammar for the h e a r structure o f Diebenkorn's Ocean Park paintings.

sponding one i s stored in memory and
a corresponding one i s displayed. But
this correspondence need not be so

direct. I t is acceptable for the stored
image not to correspond to the
scanned image, so long as the recov-
ered image st i l l has the direct corre -
spondence with the scanned image.
This i s the approach taken with com-
mon code compression techniques. In
code compression, the redundancy of
the scanned image i s exploitcd to save
on storage requirements. What is
stored i s an encoded version of the
scanned image in which certain com-
monly occurring arrays of adjaccnt
pixels (such as all white or all black
ones) are represented with a more
economical code than would be used
with more direct storage. Then, when
the image is recovered for display, i t i s

decoded to producc the correspon -
dence between the displayed image
and the original scanned image. The
resulting storage economy can range
up to a factor of about tenfold.

With encoded images, it is proper
to speak of the displaved image as
having been reconstructed from the
encoded representation in storage.
There are two kinds of such recon -
structions, unique and approximate.
The f i r s t kind reconstructs the
scanned image identically; the second
does not. The reason for using these
two types of encodings is that unique
reconstruction achieves absolute fidel -
ity to the scanned image, but approx -
imate reconstruction can achieve
greater storage economy.

The cost of storage i s determined by
thr kind of approximation one uses. A

Rules/or derelopmenr of R-repom o/unlabeled rype

F R

R F

simple kind of approximation that i s
widely used depends on the degree of
the f i n e structure in the image. This
approximation starts by transforming
the image into an entirely new image
not apparently like the original. A use-
ful property o f this new image i s that
all the fine, detailed structure i s lo-
cated in one part o f the image and the
gross structure is located in another
part. I t i s possible to recover the orig-
inal image by a certain reverse trans
formation. But, first, the part of the
transformed image containing the
fine structure i s removed. This yields
a smaller image that can be stored
more economically. To recover the
original image, a reverse transforma -
tion is made, which yields an approxi -
mation to the original image. But the
f ine structure is gone. This so-called
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Fig. 8b. A grammar for the linear structure of Diebenkorn's Ocean Park paintings (continued).

'spatial frequency filtering' does not
depend on any interpretation of the
image. All fine structure i s treated
equally, whether i t be a pimple on a
nose or a pebble on the ground. And
it can yield storage economy by as
much as a factor of 10 to 100.

The appearance of a reconstructed
image that has been spatial frequency
filtered i s easy to compare with the un-
filtered image. The filtered one a p
pears to be a blurred version of the
original. Other kinds of approximate
reconstruction are less easy to com-
pare with their original images. One
such reconstruction method, which
claims to achieve large storage econ-
omy, uses fractals [8]. A fractal curve
has a complex structure that i s sugges-
tive of, but different from, the struc -
ture of natural objects. To the super -

ficial observer, images constructed
from fractal curves often appear re-
alistic. This property has been exploit -
e d in computer graphics research to
create artificial images that lack the
obvious geometric shapes often as-
sociated with computer -generated im-
ages. For example, pictures of flowers
or mountains have been constructed
with fractal curves to create a pleasing
illusion that, nevertheless, is uncon-
kincing to a botanist or geologist. Fur-
thermore, even scanned photos that
have been encoded for storage and re-
constructed with fractal curves can
create the illusion of being 'realistic'
reconstructions. We would expect the
pimples and pebbles would look real -
istic, but not like their originals. So, if
we are willing to accept that once one
has seen one pebble one has seen all

pebbles, this method of achieving stor-
age cconomy has some attractive -
ness-but only i fwe are tolerant of dc-
viant pebbles! For those who would
'see the world in a grain of sand', such
economy is less acceptable.

PROVIDING IMAGE
INTELLIGENCE TO
THE COMPUTER

The storage and recovery schemes
thus far discussed exhibit a benign in-
difference to the content of the im-
ages dealt with. Even for images that
have been approximately reconstruc -
ted, the approximation i s not based on
any understanding of the image con -
tent. Rather, the image's statistics con-
stitute the basis for accepting and re-
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ject ing image properties during a p
proximate reconstruction. Surely we
can do better than this!

Indeed we can in several ways. We
consider f i r s t a method whereby the
computer clearly has some knowledge
of the image content, although the
knowledge is insufficient to recon -
struct an image. Rorvig hasshown how
primitive -feature extraction proce -
dures can be used by the computer to
classify a set of woodcuts [9]. The
primitive features consist of lines, an-
gles and density distributions in the
image. Thcse were correlated with aes
thetic judgments made by human
viewers of the same set of images.
Close correspondence between the
human judgment and the machine
ranking was seen to be possible.
Clearly, the simple primitives pro-
vided to the computer were insuff i -
cient to characterize the images com-
pletely or to reconstruct them. This
procedure, nevertheless, could pro-
vide the computer with an elementary

component of understanding of an
image similar to the understanding by
a human viewer.

A much larger step in the direction
of computer understanding of art im-
ages occurs in the work of Harold
Cohen [ lo] . The imagcs h e provides
to the computer do not come from any
external source but, in fact, are gen-
erated by the computer itself. A pro-
gram written by Cohen uses algo-
rithms that represent principles of his
composition. These are used to gen-
erate drawings both abstract and figu-
rative. The drawings all have a readily
identifiable style and can be produced
in unlimited quantity. I t i s clear that
the computer has suffkient intelli-

gence to produce images that are both
aesthetically interesting and consis -
tent in stylc.

Since Cohen’s images are gen-
erated ab initio, the storage problem
for these images has a transparently
sinlple solution. To reconstruct any
image i t i s only necessary to know the

Fig. 9. Six stages in the generation of Fig. 7 according to the grammar o f Fig. 8. The nota-
tionll*denotes rule llapplied 2 times.
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algorithms for image generat.ion and
the specific options excrcised by the
computer in the production of the
particular image. The storage require -
ment for th is information, which i s
peculiar to any single image, i s mod-
est. So, in a sense, we have a case of a
computer that knows almost cvery -
thing about such an image and can
convert that knowledge into economi -
cal storage of the image. Of course,
Cohen’s computcr knows all about i t s

own images and nothing about ones
generated by any other artist. But i t i s
interesting to speculate whether such
a machine might be able better to un-
derstand drawings of other artists by
using i t s demonstrated ability to gen-
erate drawings of i t s own! At present
that question i s quite open.

I f the computer’s knowing a class of
images (in the Sense that the whole
class o f Cohen’s drawings can be gen-
erated) leads to great storage econ -
omy, i t is important to know whether
that approach can be achieved when
we are dealing with preexisting im-
ages. T h e question was answered af-
firmatively in 1964 [ll].T h e tech-
nique introduced was drawn from
computational linguistics but modi-
fied to deal with images: the use ofpic-
ture grammars. I t was shown that a
large class of images could be de-
scribed succinctly by a grammar that
successively transforms two-dimen-
sional shapes into final forms that
correspond to recognizable images.
The resulting field of syntactic analysis
of images developed many tools, the
most productive of which was the
shape grammar [1‘21.

Although shape grammars are im-
portant conceptual dedces for de-
scribing images, they have made more
tangible contributions. Beginning in
1977, architects created shape gram-
mars for a wide range of disciplines, in-
cluding buildings [13,14], landscapes
[15], furniture designs [16] and win-
dow patterns [17],

The schematization required by
shape grammars poses litt le limitation
in design areas such as architecture,
where schematic drawing i s already
widely accepted. Consequently, gram-
mars have been readily accepted in
these cases. As wc might predict, great
economy of representation can be
achieved because each grammar im-
plies a large, or infinite, set of designs.
To store the description of a single de-
sign, it i s necessary only to specify,
within the grammar, the options exer-
cised that distinguish that design. As
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before, such a specification is orders
of magnitude less costly in storage
than would be a scan of the drawing
for a design.

These architectural examples were
the first practical use of grammars to
describe a very large class of images in
such a way that the images could bc
regenerated from the class descrip -
tion. But the question still remained
whether images such as paintings
could be treated this same way. Again,
wc have answered this question affir-
matively by constructing a grammar
for Diebenkorn’s Ocean Park series of
paintings [18]; the question has suh
sequently been answered also by
Knight, who constructed a sequence
of grammars for the successive stylistic
periods of Vantongerloo and Glarner
[19]; and by Lauzzana and Pocock -
Williams, who constructed a rule sys
tem for the skeletal organization of
Kandinsky’s paintings 1201 All these
examples provided the computer with
suffkient understanding of the target
class of imagesfor u s to credit the com-
puter with substantial understanding
of the style of the artists. And it i s this
understanding that can be exploited
for many purposes, among them the

economical storage of the approxi -
mate representationsof the images de-
scribed by the grammars.

ECONOW
RESULTING FROM
INTELLIGENT IMAGE
STORAGE

We wish, now, more specifically to cal-
culate the economy that results from
storage of images in an intelligent
computer. We will start with Richard
Diebenkorn’s paintings and deter -
mine how much storage is needed for
an image described by the grammar
[21]. Because the grammar contains
recursion, there are an infinite num-
ber ofpaintings described (all of them
purportedly in the style of Dieben -
korn). For any such painting, there i s
a sequence of rule applications that,
when applied in the proper order, will
result in a representation of the target
painting. At certain points in the pro-
cess, the grammar provides a set of al-
ternatives among which a choice may
be made in producing a picture. We
must use information to specify which
choice i s to be made. If there are Nal -
ternatives offered by the grammar at

Fig. 10. An artificial Miro composition based on a catalog of prototype shapes.

that point, making such a choice al-
ways can be done by specifying no
more than the logarithm (to the base
2) of N bits of information. Thus, if
there were eight choices, any one of
these could be specified with no more
than 3 bits of information, four
choices with 2 bits, two choices with 1
bit, etc. Then, by summing the infor-
mation associated with each of the
choices made in the production of the
picture, we determine how much in-
formation i s needed to specify the
whole picture, with respect to the
grammar.

For an example, we will choose the
picture o f Diebenkorn’s Ocean Purk
No. 111 shown in Fig. 6. The repre -
sentation to be used i s shown inFig. 7.
Such representations of the paintings
are providcd by the grammar taken
from Kirsch [22] as shown in Fig. 8.
The process of generating Fig. 7 from
the grammar i s shown in Fig. 9. Here
we see six of the 32 stages in the gen-
eration process.

We sta r t with a blank canvas as
shown in the f i rs t image of Fig. 9. Cor-
responding to this image i s the start -

ing symbol of the grammar, OPP. We
notice that there are three rules (nos.
1,2,3) that provide options for devel -
oping this blank canvas. On the aver-
age, with log(3) = 1.58 bits of inforn~a -
tion, we can specify our choice, which
is, for th is picture, the second rule.
Now, the grammar confronts uswi th a
single rule for further developing the

resulting OP/S that resulted from rnle
2. This single rule (no. 4) creates a
blank canvas labeled with a Q. Since
there are no choices provided, no in-
formation need be specified, and the
cumulative total information remains
at 1.58 bits. At this point we are con-
fronted with a set offour rules (nos. 5,
6, 7, 8), any onc of which may be in-
voked. For the intended picture, we
choose rule 7 byspecifylng log(4) = 2.0
bits o f information. This raises our
cumulative total to 1.58 + 2.0 = 3.58
bits of information. We thus far have
produced the second image inFig. 9.

To produce thc third image in
Fig. 9, we f i r s t invoke rule 11 twice to

produce the two top horizontal bands
(2 X log(4)), rule 12 once to produce
the vertical band on the lef t (IX

log(4)). rule 13 to produce the mcdial
vertical band (1 X log(4)), and finally
rule 14, which removcs the /S sub -
script that allows the previous rules to

be applied (1x log(4)). This adds 10.0
bits to yield a cumulative total of 13.58
bits.

The fourth image in Fig. 9 is pro-
duced by seven applications ofrule 36.
Each such application represents a
choice among five alternatives, yield-
ing a contribution to the total of 7 X

log(5) = 16.25 bits.
Then the fifth image is produced by

seven applications of rule 20, which is
chosen among five alternatives, yield-
ing 7 X log(5) = 16.25 bits.
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Finally, the target image is pro-
duced from rule 38 (2.32 bits), ru le 37
twice (4.64 bits), rule 26 (2.0 bits), rule
28 (2.0 bits), rule 27 twicc (4.0 bits),
rule 30 (2.32 bits) and rule 36 twice
(4.64 bits). The cumulative total i s
thus 68.0 bits.

What the above calculation shows is
that, if we provide the computer with
thc intelligence to understand the
whole class of Diebenkorn composi -
tions represented by the grammar of
Fig. 8, any picture thereafter c a n be
specified very economically. The ex-
ample requires only 68 bits, or less
than 9 bytes, of data to store it. This
number should he compared with the
storage requirrments for an ordinary
TV scan of the same painting, which
would require about 0.25 million
bytes. The dramatic difference in stor-
age requirements i s accounted for not
only by machine intelligence but also
by the fact that two different kinds of
representation are being compared.

It i s important to point out that
these two kinds of representation also
elicit different levels of understanding
from people and machines. For the
computer, a TV scan carries no mean-
ing whatsoever. However, a grammati -
cal representation does furnish i t with
a degree of understanding. Of course,
for people, the TV scan is immediately
comprehensible. The grammar i s a
human artifice created with great ef-
fort and insight, but i t can produce a
schematic representation that can be
understood by both people and ma-
chines. If we wish to use the computer
for operations upon images such as
automatic searching of a large collec -
tion of images rather than textual de-
scriptions of these images, then the
grammatical approach i s the only one

of the two storage methods that makes
such a search possible.

The extreme storage economy
available for the Diebenkorn paint-
ings, in an intelligent computer pos-
sessed of a grammar, results from our
generosity in accepting the linear
schematization of h is works that we see
in examples like Fig. 7. Like any repre -
sentation, such linear schematization
results in a loss of essential informa -
tion from the original painting. But
the loss achieves the dual gains of stor -
age economy and intelligent under-
standing by the computer.

How mightwc preserve more infor-
mation in a representation? An ob-
vious approach i s to help the com-
puter to understand shape. Since
shape does not appear essential in the

Diebenkorn paintings, we can con-
sider an artist l ikeJoanMir6, forwhom
shape i s essential. In a recent article,
we discussed how artificial Mir6 com-
positions can be constructed based on
a catalog of Mir6 shapes [23]. A typi-
cal such example i s shown in Fig. 10,
which may be compared with another
example shown in Fig. 8 of the afore-
mentioned article and with a phot*
graph of a Mir6 in Fig. 9 of the same
article. These compositions in the
style of Mir6 can be represented very
economically since each shape i s
drawn from a small catalog of proto-
types, each of which can be specified
with about 5 bits for identification,
another 20 bits for size and another 20
bits for location. With those 45 bits
representing each shape, a composi -
tion containing N shapes can bc repre -
sented with 45 X Nbits.

While this method results in much
greater economy of representation
than TV scanning, we have al-rived
onlyatan ad hocsolution. Leyton [24]
and Jakubowski [25] have suggested
better ways to represent shape. Ley-
ton’s scheme uses a grammar for the
shapes themselves jus t as we have used
one for the compositional arrange -
ments in Diehenkorn. H e has devised
grammar rules that correspond to the
successive deformations that trans-
form a simple circle into elaborate
shapes with invaginations and evagina -
tions that occnr at maxima and min-
ima of curvature. We currently are in-
vestigating a f i r s t such grammar for
Mir6 shapes. This grammar allows u s
a wide choice of shapes as well as a nat-
ural characterization of how the artist
draws and how the viewer sees.

CONCLUSION

We have seen several examples of how
a computer may be given the intel -
ligence to perceive representations of
artworks. We have also seen how ex-
pensive it i s to provide raw scanned
images to a computer storage system.
These scanned images are effectively
invisible to the computer, afact decep -
tively easy to forget since those same
images are readily visible to the
human viewer.

Once the large investment in pro-
viding appropriate intelligence to the
computer has been incurred, many
rewards accrue to the art historian,
critic, educator, archivist and artist.
We have directed our attention only to
the question of economy of storage.

But it i s reasonable to expect that a
computer that can view images intel-
ligently in one way can do so in other
ways, too.
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